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favorably with Simulated Annealing. We demonstrate that 
The performance of Sniffer-a new global optimization algorithm-is this is, in fact, the case in Section 4, where we compare the 

compared with that of Simulated Annealing. Using the number of 
function evaluations as a measure of efficiency, the new algorithm is 

results of the Sniffer algorithm with those of Simulated 

shown to be significantly better at finding the global minimum of seven 
Annealing when applied to the test functions of Dixon and 

standard test functions. Several of the test functions used have many Szego. 
local minima and very steep walls surrounding the global minimum. 
Such functions are intended to thwart global minimization algorithms. 
0 1992 Academic Press, Inc 2. DESCRIPTION OF THE DONNELLY 

AND ROGERS SNIFFER ALGORITHM 

1. INTRODUCTION 

In 1984, Vanderbilt and Louie [ 1 ] described a version of 
Simulated Annealing for unconstrained optimization over 
continuous variables. To demonstrate the efficacy of their 
algorithm, and to compare it with a variety of (then) current 
methods, they applied it to the seven test functions 
proposed in Dixon and Szego [2]. Since that time, 
Simulated Annealing has become the method of choice for 
a variety of optimization settings. 

In this paper we compare a new global optimizer, Sniffer, 
to Simulated Annealing using these same test functions. 
The Sniffer algorithm (named by Donnelly whose original 
FORTRAN program used a subroutine named SNIFR) 
was introduced by Donnelly and Rogers in [6] and has 
since been applied, with much success, to a wide class of 
optimization problems in engineering and the natural 
sciences [4, 5, 3, 7, 83. Some of these problems have over 
400 degrees of freedom and contain thousands of local 
minima. In Section 2 we present a description of the original 
Sniffer algorithm, and in Section 3 we describe an extension 
of the algorithm that is capable of altering some of its own 
parameters in an attempt to solve individual problems more 
efficiently. This algorithm should be considered as one of a 
family of possible extensions to or variations on the original 
Sniffer algorithm. The purpose of this paper is to 
demonstrate that this family of algorithms can provide an 
efficient global optimization algorithm that compares 

* The authors thank the reviewers for their helpful suggestions. 
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In 1981, Griewank [9] developed a global optimizer that 
attempted to find the global minimum of a differentiable 
objective function by following carefully constructed search 
trajectories. If we assume that c is a target level which 
is higher than the desired global minimum value of the 
objective functionf, then Griewank’s search trajectories are 
solutions of the second-order differential equation 

x”(t) = -e(z-x’(t)x’T(t))Vf(X(t)) 
f(x(t)) - c 

2 e > 0, 

with any initial point (x,,, x&) satisfying f(xO) > c, and 
llxb II = 1. 

By construction, Griewank’s search trajectories are 
solutions of the above differential equation and, as such, 
possess several desirable properties, including: 

1. Trajectories cannot converge to minima with values 
greater than c. 

2. If a particle follows a search trajectory, then its speed 
at position x(t) is proportional to f(x( t)) - c. Thus, as a 
trajectory gets closer to the target level c, the speed at which 
it is followed is reduced, and the trajectory does a more 
thorough job of minimizing the function f at lower levels. 
Conversely, as a trajectory moves further from the target 
level c, the speed at which it is followed is increased and so 
little time is wasted minimizing the function at higher levels. 
When f < c, the technique of following search trajectories 
amounts to a local minimization technique. 
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3. Trajectories are invariant with respect to translations 
of the variables and multiplication of the termf(x(t)) - c by 
a positive scalar. 

When following one of Griewank’s search trajectories, a 
particle will tend to turn towards the negative gradient 
direction. The extent to which the gradient influences a 
particle’s direction of motion is determined by the gradient 
sensitivity parameter e in Griewank’s differential equation. 
Larger values of e give rise to trajectories that more closely 
follow the gradient of the objective function. 

In his paper, Griewank proves that for a certain class of 
objective functions, and for appropriate settings of the 
parameters e and c, search trajectories satisfying his 
differential equation are able to escape local minima and 
converge to the global minimum of the objective function. 
However, if implemented exactly as described in [9], 
Griewank’s algorithm is extremely expensive computa- 
tionally since the solution of an ordinary differential equa- 
tion must be computed at each step. To overcome this 
problem, Donnelly and Rogers [3, 61 introduced a discrete 
analog of the algorithm. Their algorithm, which they later 
called Sniffer, attempts to find the global minimum of an 
objective function by stepping along discrete analogs of 
Griewank’s search trajectories. 

In its barest form the Sniffer algorithm can be described 
as follows: let x0 be an initial position and let do be an initial 
unit direction vector. Let E be a gradient sensitivity 
parameter similar in effect to Griewank’s e parameter, and 
let p be a step size parameter which will be used to determine 
the size of the algorithm’s steps. Usually do is initialised 
as -V’(x,)/~Vf(xO)~, and typical values for E and p are 
E = 1.0 and p = 0.2. Given the pair (x,, d,) we compute 
(x ,I + , , d,, + , ) in the following manner. Define 

cc=max{O, l+(l +E)dTVf(x,)} 

6= -EVf(x,)+ad, 

and use these to compute d, + , and x,, + , from the equations 

d n+l =Wl 

x n+l =x,+/4f(x,)--C)dn+l. 

The parameter CL is, by definition, guaranteed to be non- 
negative, and it is defined so that if the angle between d, and 
-Vf(x,) is less than 90” and IVf(x,)l is large, or if the angle 
is very close to O”, then the algorithm should follow the 
negative gradient instead of crossing back and forth over it 
in a zigzag fashion reminiscent of steepest-descent methods 
in valleys. 

To find a global minimum using the Sniffer algorithm 
we successively compute pairs (xi, d,), (x,, d,), . . . . By 
computing the value offat the points x,, x2, . . . we are then 

able to investigate the function fs minima. The discrete 
“walks” produced by the Sniffer algorithm possess properties 
similar to those of Griewank’s search trajectories. They 
slow down at lower levels and speed up at higher levels thus 
wasting little time minimizing the function. 

3. A VARIATION OF THE DONNELLY 
AND ROGERS SNIFFER ALGORITHM 

In an attempt to improve the performance of the original 
Sniffer algorithm, we have enabled the algorithm to 
repeatedly alter its own parameters based on the 
preliminary results of its continuing search. These modifica- 
tions, the result of many numerical experiments on several 
different “test functions,” in no way constitute a new 
algorithm, but rather the incorporation of some limited 
“intelligence” into the existing one. In this section we 
provide complete descriptions of, and at least partial 
justifications for, all of these modifications. The changes we 
have made generally increase the speed at which the Sniffer 
algorithm finds the global minimum of the test functions. 

As stated in Section 2, the original Sniffer algorithm 
requires the user to provide initial values for several 
(program) parameters. These include an initial value for c 
(an estimate of the minimum value of the function), E 
(a parameter measuring the algorithm’s sensitivity to the 
function’s gradient), and ~1 (a parameter that is used to 
determine the algorithm’s step size). The original algo- 
rithm’s performance is intimately connected with the choice 
of all of these parameters. Ifs is chosen close to zero then the 
gradient information will be largely ignored and the particle 
will move in a direction, d, + r, close to the direction d,. If 
E is relatively large, the particle will move in the direction of 
-Vf(x,), the negative gradient. The current function value 
and the choices of c and p all influence the step size. Iff(xn) 
is close to the value c, or if p is small, then the step size will 
be small. However, iff(x,) is far from c, or if p is large, then 
the step size will be large. In the original implementation of 
the algorithm, c was chosen to be slightly smaller than a 
known value off, the parameter E was generally chosen to 
be 1.0, and p was set at 0.2. Clearly, these initial values 
cannot be adequate for every optimization problem, and 
even when they are initially adequate, they are unlikely to 
remain so for the entire optimization process. 

The first attempts at modifying the algorithm were of an 
interactive nature. As the functionfapproached the value c, 
c was lowered. Also, while observing the motion of the 
particle, E and p were altered to either avoid known local 
minima or to investigate wells containing possible global 
minima. It was also observed that some trajectories, after 
having reached a fairly low value off, proceeded to “higher 
ground’ for too many iterations. After a number of itera- 
tions, the algorithm was restarted at the point x, with the 
lowest function value encountered and given a random 
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direction vector or the direction of the negative gradient of 
fat x,. We have now incorporated some of these heuristics 
into the algorithm itself. 

By enabling the algorithm to alter its own parameters, we 
were able to gradually reduce the area within which the 
algorithm searches for a global minimum and, hence, to 
increase the speed with which it finds a global minimum. (In 
Simulated Annealing a similar reduction of area is affected 
by reducing the “temperature.“) The present variation of the 
Sniffer algorithm uses the “original” algorithm (as defined 
in [6,3]) as a subroutine called MINIM. The subroutine 
MINIM is given an initial position at which to start 
searching for the global minimum (either a “random” posi- 
tion at the very beginning of the algorithm’s use, or the 
position of the best minimum found so far), and is then 
allowed to run for a fixed (maximum) number of steps 
called MAXSTEPS. Once the subroutine MINIM has been 
run, the values of E, p, c, and MAXSTEPS are all adjusted 
as follows: 

EtEXM, 

P + PLIM, 

MAXSTEPS t Msteps x MAXSTEPS 

C 4- (C + min)/2 - Cbias 

Cbias + Cbias /Mbias . 

In order to make the algorithm increasingly sensitive to 
the local gradient as more steps are taken (and hence as we 
hopefully come closer to finding a global minimum), the 
value of E is increased-in the present algorithm we have 
simply multiplied by a constant factor M,. To reduce the 
area in which MINIM searches for the global minimum we 
also reduce the value of p-this corresponds to reducing 
the step size and is achieved in our present algorithm by 
dividing the value of p by the factor M,. To guarantee that 
the region searched by MINIM is bounded, we also intro- 
duce a maximum allowable step size pmax. This parameter is 
the maximum value allowed for the term p(f(x,) - c) in the 
equation x, + i =x, + p(f(x,,) - c) d,+ i. In order to give 
the MINIM subroutine more time to search the reduced 
area, we increase MAXSTEPS (the maximum number of 
steps that MINIM will be allowed to take) by multiplying 
by the factor Msteps. Finally, the value of c is adjusted using 
the lowest value of the function that has been found so far. 
The initial value of c is set at a somewhat arbitrary value 
(- 100.0 for the present numerical experiments), and this 
value is then periodically adjusted by the program 
according to the best information that the algorithm has as 
to the exact value of the minimum. If we denote the best 
minimum found so far by min, then the value of c is com- 
puted using c = (c + min)/2 - Cbias. Here Cbias is a positive 
number (set initially to Icl/lO) that is used to ensure that the 

value of c is always below the best minimum found so far. As 
with all the other parameters, we also adjust the value of 
cblas after each call of the subroutine MINIM. In the present 
program we repeatedly decrease the size of cblas by dividing 
it by Mbias. 

The values of the constants used in the present variation 
of the Sniffer algorithm were chosen after performing many 
numerical experiments and are as follows: M, = 1.1, 
M, = 1.7, Msteps = 1.1, and Mbias= 1.1. (We note that in [9] 
Griewank suggests altering his gradient sensitivity 
parameter, e, by multiplying by 1.1 in order to reduce the 
probability that his search trajectories will leave the search 
area.) 

In order to compare the results of [l] with those 
obtained using our variation of the Sniffer algorithm, we 
attempted to use the very same stopping criterion. The algo- 
rithm was considered to have found the global minimum if 
the minimum value it found, minfound, when compared with 
the true minimum, mintrue, satisfied the following condition: 

In the present paper we have used the above variation of 
the Sniffer algorithm to find the global minimum of each of 
several standard test functions. In the process of producing 
the present variation several other similar schemes were 
tried and tested. The results of these preliminary tests 
motivated the choice of the present constants used to adapt 
the parameters that appear in the algorithm. Even though 
the present constants give excellent results, they are very 
unlikely to be optimum-further numerical studies need to 
be performed. The method by which we change the algo- 
rithm’s parameters is also an area in which many other 
schemes could be employed. However, even using our 
simplistic approach, the performance of our variation (as 
we see in the next section) compares very favorable with 
that of Simulated Annealing. 

4. OPTIMIZATION FUNCTIONS 
AND RESULTS 

The seven test functions described by Dixon and Szego 
were intended both to thwart global minimizers and to 
model minimizations which occur in practice. These 
functions have either very steep walls surrounding the local 
minima or an enormous number of local minima. For 
completeness we include a detailed description of these 
functions. 

SHEKEL'S FAMILY (Fl,F2,and F3). 

Ax)= -i;, (x-a,)T;_a)fc.> I I 
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wherex=(x,,x,, x3, x4JT, a, = (ajl, ajz, ai3, ai4JT, and the 
region of interest is 0 d xj < 10, for j = 1, 2, 3,4. The 
function Fl has m = 5, F2 has m = 7, and F3 has m = 10. 
The global minimum value for Fl is - 10.1532, for F2 is 
- 10.40294, and for F3 is 10.53641: - 

i a, c, 

1 4.0 4.0 4.0 4.0 0.1 

2 1.0 1.0 1.0 1.0 0.2 

3 8.0 8.0 8.0 8.0 0.2 

4 6.0 6.0 6.0 6.0 0.4 

5 3.0 7.0 3.0 7.0 0.4 

6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.6 

8 8.0 1.0 8.0 1.0 0.7 

9 6.0 2.0 6.0 2.0 0.5 
10 7.0 3.6 7.0 3.6 0.5 

HARTMAN’S FAMILY (F4, F5). 

f(x) = - c c;e-$=, e-PI/Y, 
i= 1 

where X= (~1, . . . . x,), pi= (pii, ...,pin), aj= (ail, . . . . ain), 
and the region of interest is 0 <xi < 1 for i = 1, . . . . n. The 
global minimum value for F4 is -3.86278, and for F5 is 
- 3.32237. F4 has n = 3: 

i a!/ C, P’J 

1 3.0 10.0 30.0 1.0 0.36890 0.1170 0.2673 
2 0.1 10.0 35.0 1.2 0.46990 0.4387 0.7470 
3 3.0 10.0 30.0 3.0 0.10910 0.8732 0.5541 
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828 

F5 hasn=6: 

i ai/ c, 

1 10.00 3.00 17.00 3.50 1.70 8.00 1.0 
2 0.05 10.00 17.00 0.10 8.00 14.00 1.2 
3 3.00 3.50 1.70 10.00 17.00 8.00 3.0 
4 17.00 8.00 0.05 10.00 0.01 14.00 3.2 

i P,j 

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

BRANIN (F6). 

f(x,, X2)=a(x,-bx~+cx,-d)2 
+e(l-f)cosx,+e, 

where a = 1, b = 5.1/(4n2), c = 5/n, d= 6, e = lO,f= 1/(8x), 

581/99/I-3 

and the region of interest is - 5 6 x1 < 10 and 0 6 x2 6 15. 
The globai minimum value for F6 is 0.39789. 

GOLDSTEIN AND PRICE (F7). 

+ 3x: - 14x, + 6x, x2 + 3x;)] 

x [30+(2~,-3x,)~ (18-32x, 

+ 12x; + 48X, - 36x, x2 + 27x;)], 

where the region of interest is - 2 d x1, x2 d 2. The global 
minimum value for F7 is 3.0. 

Table I shows the initial parameter values used for the 
Sniffer algorithm. Sniffer 1 denotes the algorithm in which 
the parameter values were chosen to achieve the greatest 
success percentage using the lowest number of function 
evaluations. Sniffer 2 denotes the algorithm in which the 
success percentage was intended to equal that of Simulated 
Annealing with the least number of function evaluations. 

In [ 1, p. 2651 one of the principal free parameters, T,, 
was “essentially chosen on the basis of the variance of a 
random sample” and the other, xT, was chosen “by trial 
and error.” To provide a methodology as similar as possible 
to that used by Vanderbilt and Louie, we chose the required 
program parameters on the basis of a small number of 
numerical experiments. The program parameters E, p, pmax, 
and MAXSTEPS were chosen in two stages. As an initial 
approximation we set E = 1.0, p= 0.2, P,,~ = ,u, and 
MAXSTEPS = 100. For Sniffer 1, we perturbed these values 
one at a time to determine the effect of increasing or 
decreasing that parameter on the success rate and then used 
the information obtained to produce a single set of 
parameter values for each function. For functions Fl, F2, 
and F3, this method very quickly produced the values 
shown in Table I. For the functions F5 and F6 a large 
change was made to MAXSTEPS, and for F4 and F7, 
increasing the gradient sensitivity parameter also improved 
performance. 

TABLE I 

Parameter Values Used in the Minimization of the Seven Standard 
Test Functions 

Sniffer 1 Sniffer 2 

Function E p pmar MAXSTEPS E p p,,, MAXSTEPS 

Fl 1.1 0.15 0.17 95 t.4 0.19 0.19 22 
F2 1.7 0.24 0.24 104 1.9 0.25 0.25 24 
F3 1.4 0.25 0.25 95 1.6 0.24 0.24 44 
F4 20.0 0.01 0.50 20 20.0 0.01 0.50 20 
F5 1.0 0.10 0.20 22 1.0 0.05 0.10 5 
F6 1.0 0.10 1.00 5 1.0 0.10 1.00 5 
Fl 4.0 0.80 0.80 10 4.0 0.80 0.80 10 
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TABLE II 

Comparison of the Efficiency of Simulated Annealing to 
That of Sniffer 

Simulated annealing” Sniffer 1 Sniffer 2 

Function Percent Function Percent Function Percent 

Function Evaluations Success Evaluations Success Evaluations Success 

Fl 3910 54 3695 90 1040 54 

F2 3421 64 2655 96 1092 64 

F3 3078 81 3070 95 1589 81 

F4 1224 100 534 99 534 99 

F5 1914 62 1760 99 364 62 

F6 557 100 205 loo 205 100 

F7 1186 99 664 100 664 100 

*The values given for Simulated Annealing are from Vanderbilt and 
Louie [l]. 

Starting from the parameter values used by Sniffer 1, we 
attempted to make minimal changes in order to match 
Simulated Annealing’s success rates. No changes were 
necessary for the parameters for functions F4, F6, and F7 
because the success rates were very close to 100% for both 
methods. Our major strategy for the remaining functions 
was to decrease the total number of steps used while at the 
same time approximating the success rates of Simulated 
Annealing as accurately as possible. We achieved this by 
decreasing MAXSTEPS and making minor perturbations 
to E, P, and pmax. Only a small number of numerical 
experiments were necessary to obtain the very same success 
rates as those of Simulated Annealing. 

Table II gives the number of function evaluations 
(including those needed for the gradient calculations) based 
upon 100 runs for each function and the percentage of 
success. 

Two things are apparent from Table II. First, the Sniffer 1 
success rate is at least 90% for these seven test functions 
and, except for Fl, the success rate is at least 95%. In all 
cases this compares favorably with Simulated Annealing’s 
success rate. Perhaps the most demanding function is F3 on 
which Sniffer 1 uses essentially the same number of function 
evaluations as Simulated Annealing, but achieves a 14% 
higher success rate. Second, Sniffer 2 achieves success rates 
comparable to those of Simulated Annealing, but with fewer 
function evaluations, at worst 56 % of the number of evalua- 
tions Simulated Annealing performed for function F7, and 
at best 19 % for function F5. 

These results indicate that the Sniffer algorithm is a viable 
optimization algorithm for continuous variables. Other 
work [7] shows that for optimization problems involving 
hundreds of variables, the Sniffer’s advantage over other 
optimization methods is even more striking. 
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